3d建模论文写作范文大全 第1篇
一是教师未能实现角色转换。建模教学离不开学生“做”数学的过程,因而教师在教学中要留有让学生思考、想象的空间,让他们自主选择方法。然而部分教师对学生缺乏信任,由“引导者”变为“灌输者”,将解题过程直接教给学生,影响了学生建模能力的提高。二是教师的专业素养有待提高。开展建模教学,需要教师具有一定的专业素养,能驾驭课堂教学,激发学生的兴趣,启发学生进行思考,诱发学生进行探索,但是部分教师专业素养有待提高,或认为建模就是解应用题,或重生活味轻数学味,或使讨论活动流于形式。三是学生的抽象能力较差。在建模教学中,教师须呈现生活中的实际问题,其题目长、信息量大、数据多,需要学生经历阅读提取有用的信息,但是部分学生感悟能力差,不能明析已知与未知之间的关系,影响了学生成功建模。
3d建模论文写作范文大全 第2篇
就当下的情况来分析,如果想要应用数学知识去更好地解决实际问题,经常需要在数学理论和实际问题之间构建一个桥梁来加以沟通,便于把实际问题中的数学结构明确表示出来,这个桥梁就是数学模型。本研究根据数学建模上的要求,通过以下步骤来实现数学建模:
从上图可以看到,初中数学建模,首先需要将现实问题抽象化,一般来说,可以通过函数或者是方程的形式,建立一个切合实际的数学模型,通过这种方式,降低现实问题的解决难度。其次,必须根据已经建立的数学模型,作出合理的数学解释。比方说,方程和函数的解决方法不同,最后得到的结果也不同。第三,要对数学结果进行翻译和检验,观察数学结果是否符合实际问题的需求。如果是负数,即便符合数学本身的要求,但是不符合现实问题,此结果必须舍弃。第四,将得到的数学结果代入现实问题中进行解决,看看是否存在合理的解释。整个过程在理论上比较复杂,但在实际应用时,可以在短时间内解决问题,甚至改变问题的方向,寻找到更好的解决方案。
3d建模论文写作范文大全 第3篇
1、自主探索原则。
学生长期处于师讲、生听的教学模式,沦为被动接受知识的“容器”,难有创造的意识。在教学中,教师要为学生创设轻松愉悦的探究氛围,让学生手脑并用,在探索、交流、操作中提高解决问题的能力。
2、因材施教原则。
教师要着眼于学生原有的认知结构,要贴近学生的最近发展区,引导他们从旧知的角度思考,找出问题的解决方法。
3、可接受性原则。
数学建模内容的设计,要符合学生的年龄特点和认知能力,能让学生理解所探究的内容。若设计的问题不切实际,往往会扼杀学生的兴趣,教师要密切联系教学内容、生活实际,让学生有能力解决问题。
3d建模论文写作范文大全 第4篇
1、自学讨论式。
“先学后教”改变了传统教学中“师讲生听”、“师说生练”的模式,在教师的导学、导疑、导思中激发学生的学习兴趣,引发学生的积极思考,让他们在交流中思想不断碰撞,形成新观点,从而自身认知水平得到提高。教师要通过创设问题情境导学,引发学生的探究。例如,如图,在河岸L的同侧有M、N两个村庄,现拟在河岸边修一座水泵站P,要求使管道PM、PN所用的水管最短,另修一码头Q,要求码头到M、N两村的距离相等,试画出P、Q的位置。在提出问题的基础上,学生通过选点、测量,开展交流讨论。学生1认为,是不是和异侧相同?学生2认为,如果M、N在直线L的异侧,连接MN即为最短。学生3认为,在同侧的话,可以根据轴对性的性质,将之转移为异侧。学生4认为,这有点像照镜子。这样,学生将实际问题转化为轴对称的知识解决,在交流中彼此分享、相互促进、相互提高。
2、引导探究式。
教师提出问题,让学生通过观察、探究提出自己的猜想,在推理、论证的基础上获得结论、掌握规律。例如,某景区团体购买公园门票价为1~50人的13元/张,50~100人的11元/张,100人以上9元/张。甲团少于50人,乙团人数不超过100人,两团共计应付票费1392元。若组成一个团体购票,应付1080元。
(1)乙团人数是否也少于50人,为什么?
(2)求甲乙两团各有多少人?学生猜想乙团人数少于50人,进而推算两团人数会少于100人,团购价应少于1300元,与1392元矛盾,因而乙团人数应不少于50人,不超过100人。
3、活动参与模式。
教师提出问题,引发学生小组活动探究,进行捜集数据、整理分析,然后解决问题。例如,某件商品的售价从原来的每件400元经两次调价后调至每件324元。经调查,该商品每降价2元,即可多销售10件,若该商场原来每月可销售500件,那么经过两次调价后,每月可销售该商品多少件?学生先计算每次的降价率为10%,然后根据“件数×单价=销售额”列出方程。
总之,数学建模教学,有利于学生将实际问题转化为数学模型来解,能够提高学生分析、解决问题的能力。
摘要:高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。
关键词:数学;教学;数学建模
1.数学建模思想的意义
数学建模是指用数学符号将要求从定量角度进行研究分析的实际问题以公式的形式表述出来,再通过进一步计算得到相关结果,用该结果解决实际问题,即通过建立数学模型和求解的整个过程。数学建模是符合学生认知发展过程的,在数学建模中,学生通过对具体的假设、研究,对问题进行深入思考,最终得到结论,再根据实际情况应用到具体问题中。整个过程经历了提出问题、试探问题、提出猜想假设、验证问题及得出结论,整个过程符合学生认知发展的规律。数学建模思想的应用有助于帮助学生提高对数学的重视程度,调动学生学习的主动性,让学生的创造力得到更大的发挥。数学建模的应用对提高教师的教学水平也有所帮助,能够帮助教师更好地对学生进行教学,由此扩大教师在学生中的影响力。教学建模的思想应用还有利于提高学生参加竞赛的综合能力,吸引更多学生参加此类竞赛活动。
2.建模思想对能力的培养
数学建模思想很多是由实际问题的一般思维进行转变才能成为抽象的数学问题的,这要求对数学建模要抓住重点,从具体问题中抽象出问题的本质。因此,建模思想对于培养学生将具体问题经过抽象和简化用数学语言表达的能力具有重要的意义。在高职数学教学中,有很多的数学模型,这些数学模型为帮助学生解决实际问题提供了便利的方法,同时也为创建新的数学模型提供了基础依据。数学建模是将数学理论知识和实际应用联系起来的重要纽带,能够帮助学生不断探索数学中的奥妙,以此提高学生对数学的学习兴趣,提高学生实际应用数学的能力和解决实际问题的能力。运用数学建模解决实际问题的过程中,要根据已知条件的变化,灵活运用新方法和新途径促进学生综合运用能力和创新思维的发展。
3.数学建模在高职数学教学中的应用
利用教学内容渗透数学建模思想在数学教学中,教师要根据教材的情况和学生的实际情况,将两者相联系,让学生能够运用数学建模思想寻找解决问题的办法,解决实际问题。在教学中,教师要向学生灌输数学建模思想,利用具体模型设置和假设情景,把数学知识和实际生活相联系,帮助学生更好地理解数学实际内容,提高知识应用能力。比如在高职数学对定积分概念进行教学时,就可以通过介绍曲边梯形的面积求法,让学生学会分割、求和、取极限的定积分模型思想,然后再进行思考,求物体的体积、质量等。如果学生发现解决这些问题的数学模型的思想基本相同,就会不断拓展新思路解决其他问题。运用这种方式,能够加深学生对概念的理解,拓展学习思维,强化教学效果。在学习定理公式的时候,也可以引进数学建模思想,通过提出问题、假设问题,要求学生计算求值,再根据值的正负情况求出方程式的根,根据根值与区间的关系,引导学生想出零点定理的概念总结。
利用实际问题渗透教学建模思想教师在数学建模教学或布置作业时,要与实际的生活相联系,让学生在实际问题的解决中学会运用建模思想。比如在问题的设置上,可以利用身边熟悉的事物进行提问,让学生从熟悉的环境中找到合适的解决方法。这不仅能够帮助学生更好地理解知识概念,还与学生以后的工作有着紧密的联系。通过在实际问题中渗透教学建模思想,让学生掌握基本的理论知识,提高知识应用能力。此外,教师在课外作业的布置上也要运用数学建模思想解决实际的问题,让学生能够有效利用所学的数学知识分析解决生活中的问题,从而提高知识应用能力,培养出学生的创新思维,提高高职数学建模教学的效率。
提高数学建模思想在教材编写中的应用目前高职数学的教材基本都是按照本科教材进行编排的,重视理论而忽视了应用。高职学生大多数对理论的兴趣不大,对实际应用能够产生一定的兴趣,并较好地进行掌握。所以编写出一本适合高职培养的目标教材是十分重要的,既能满足高职数学建模思想的可持续发展要求,又能充分满足学生的要求,实现高职的培养目标。在高职数学教材的编写上,要重视学生的实际水平,不但要让学生能够学到相应的知识,还要为以后的学习打好基础,培养学生的创造力和进一步深造的能力。教师要把数学建模思想方法运用到教材中,让学生带着问题学习,把讲授的知识点和数学建模思想有机结合,提高学生掌握实际问题的能力,彻底让学生摆脱数学乏味论的问题,能够对所学内容学以致用。
4.提高高职数学教学数学建模思想的方式
教师要重视引导高职教师需要认识到讲授知识并不是教学的终极目标,更主要的是培养学生的应用和创新能力。其教学目的应当是通过科学的数学思维方式培养学生分析问题、解决问题的能力,提高他们自主学习的意识。高职学生的整体知识水平并不是很高,对于很多问题都不能深入地进行思考,遇到难题也没有继续深入研究的动力,缺乏自主创新的意识和独立思考的能力。所以教师需要重视引导的作用,引导学生的思维向更广阔的方向发展,让学生能够用数学思维看待周围的事物,仔细观察、分析各种事物之间的联系和存在的数学模型,并且能够通过数学语言描述事物间的联系,进而用求知的方式解决事物间的实际问题。教师的引导对于学生而言有启迪作用,能够激发学生的求知欲,对数学问题产生兴趣,在实际教学中是一种重要的教学手段。
重视合作的力量教师除了积极引导学生进行数学建模思想外,还要让学生学会用合作的方式提升自己的思维水平。合作可以利用整体的功能弥补一个人思维的狭隘面,解决思考单一问题,促进学生多方面、多角度地思考问题。合作让学生能够尽快找到合适的角色,通过互帮互助的方式共同提高,加快问题的解决。在合作中,学生能够准确利用自己熟悉擅长的环节帮助提高整体的成绩和思维水平,切实加强团队的整体水平和综合素质。团体合作还能让每个学生都参与进去,都有展示和锻炼自己的机会,从而增强自信心,提高学习能力,培养良好的沟通能力,促进学生之间的团结合作,帮助提高学生的交往能力。重视合作的力量,能够帮助学生发现自己的特长和特点,增强信心,提高自我探索精神,同时合作中产生的竞争也能激发学生对数学问题进行深入探究。
重视数学建模过程数学建模的最终目标并不是解决了什么样的问题、获得了什么样的结论,而是在建模过程中学生能够通过自己的努力,不断进行实践和自我否定,最终找到解决具体问题的有效方式。数学建模过程也是一个学习的过程和一个不断提升自我的过程,所以教师要重视数学建模的过程,让学生感受到实践过程的魅力,根据学生的基本状况和不同的特点,综合利用学生的特长和优点提高他们解决实际问题的能力,让学生感受到数学的意义,体会到发现数学的乐趣,养成良好的学习习惯和思维习惯。教师通过引导学生,也要让学生重视数学建模的过程,从数学建模中发现学习的乐趣,产生学好数学的信心和动力,并且通过不断深造发展,能够在数学建模中发挥自己的才能,展现出自己擅长的一面,在建模和交流中获得感受和启发。
5结语
高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。教学中只有通过不断创新,根据教学的实际情况提高学生的数学知识应用能力,这样才能不断提高学习效率,帮助学生为以后的学习和工作打下坚实的基础。
不知不觉一个学期的工作走向了尾声,本学期我社团在院领导及老师的带领下开展各项活动,并取得了一些成绩,同时也发现了新的问题,现将本学期的工作进行总结如下:
3d建模论文写作范文大全 第5篇
(一)方程(组)模型
在模型建立当中,方程组模型是一个比较常见的模型。例如:第一季度生产甲、乙两种机械设备,总共生产485台设备,通过技术上的改进,该公司计划在第二季度生产两种机械设备558台。经过统计,甲种机械设备相对于第一季度,增产了15%;乙种机械设备相对于第一季度,增产22%。请问该公司在第一季度生产甲、乙两种机械设备各多少台?这种类型题与现实生活的贴近程度较高,并且与学生的接触面很大,在建模过程中,完全可以根据学生的思维和教师的教学水平进行更好的发挥。
(二)点评
对于现实生活而言,现阶段广泛存在增长率、打折销售等问题,这些问题的相同点在于含有等量关系,可以通过构建方程组模型来解决。初中数学的优点是,总体上的深度不是很难理解,学生在学习数学建模思想时,可以尝试通过以下方法来学习:首先,将教师讲述的案例进行转化,上述的机械生产案例也许不是学生常见的,学生可以将“机械生产”改变为其他的东西,例如纺织生产、零件生产,只要符合主观上的意愿即可;其次,设计出合理的数学建模,方程组仅仅是其中的一种,教师不应该强求学生一定要通过方程组的方式来进行数学建模,还可以通过函数、不等式组等其他方式来解决问题,帮助学生的思维更加灵活,为解决问题提供一个更加广阔的基础;第三,数学建模的具体解决过程,需要通过详细的计算来实现,一般情况下会得到两种结果,有时是一正一负,有时是两个负数,有时是两个正数。得到具体的结果后,要根据问题的实际情况代入解答,这样才算是完成了整个数学建模的建立和解答。
3d建模论文写作范文大全 第6篇
(一)数学建模选修及数学实验选修开展工作
数学建模及实验是我社团指导老师针对我学院及社团的需要开设的选修课程,有助于成员学习并了解更多的建模知识。
(二)思维锻炼及团队意识培养活动古希腊雅典神庙上有句箴言:“认识你自己。”古罗马大哲西塞罗说:“每个人都对自己了解最少。”他们的提示适用于我们对右脑的认识和对自己的了解。那么我们又要如何的去锻炼我们的思维呢?一根线,一张纸,几根细竹,几笔色彩,就构成了理想的框架。理想期待同学们放飞,期待青年娇子傲视大地,向目的地奔驰。放风筝的户外活动让同学们放飞了梦想,并树立了为实现梦想而努力奋斗的信心。数独技巧讲座更是了大家缓解紧张的学习和生活带来的压力,感受到了数学的乐趣,展现了社团成员们的昂扬风貌。
(三)首届“大明眼镜”杯数独大赛
为响应建党90周年及我学院成立10周年,我社联合兄弟社团特举办首届数独大赛。通过此次比赛丰富我校大学生的课余生活,拓展大家的思维能力,增强同学们的逻辑思维能力和推理能力,让大家对数学的学习兴趣更加浓厚。本次比赛共有180余人参加,经过紧张激烈的角逐之后,最后信息学院的xxx同学以17秒的优势夺冠,获得二等奖的是理学系戈苑、xxx同学;三等奖信息学院xxx、理学系xxx、王通同学;优秀奖信息学院xxx、xxx、xxx及管理学院xxx、xxx同学。
(四)“全国数学建模大赛”的报名及培训
6月份我社团在理学系的带领下面向全院展开了“全国数学建模大赛”的报名工作,并于7月8号到7月14开展为期一星期的第一期集训,使同学们自身有了一定的提高,为9月9日到12日的比赛打好基础。
3d建模论文写作范文大全 第7篇
总体而言,通过本学期多次活动的举办,使我社团在各方面都有了一个很大的提高。首先理事会成员的组织能力与责任心上得到了进一步的提高,再就是为我社团培养出来一大批责任心强的创业人才,并且在工作任务的分配上也能使每一个会员都有事可干。总而言之,我们这一学期的进步是巨大的,但是还是存在几点瑕疵:
1、部分理事会成员的领导能力有待提高;
2、大型活动的组织能力上还有待提高;
3、社团内成员的凝集力还是不够;
4、社团的执行力还差的远;
5、各部门间的配合严重不足。
上面的四点也就是本学期我们暴漏出的问题,也是影响我社团进步的关键因素之所在。希望我们能在下一学期中得到改进,让我社团能够“百尺竿头更进一步”。
3d建模论文写作范文大全 第8篇
表述:准确、简明、条理清晰、合乎语法。
字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表
简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论2016年数学建模论文格式要求2016年数学建模论文格式要求。还可作那些推广。
1、建模准备及问题重述:
了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。
在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。
2、模型假设、符号说明
基本假设的合理性很重要
(1)根据题目条件作假设;
(2)根据题目要求作假设;
(3)基本的、关键性假设不能缺;
(4)符号使用要简洁、通用。
3、模型的建立
(1)基本模型
1)首先要有数学模型:数学公式、方案等
2)基本模型:要求完整、正确、简明,粗糙一点没有关系
(2)深化模型
1)要明确说明:深化的思想,依据,如弥补了基本模型的不足……
2)深化后的模型,尽可能完整给出
3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。
能用初等方法解决的、就不用高级方法;
能用简单方法解决的,就不用复杂方法;
能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。
4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在
建模中:模型本身,简化的好方法、好策略等;
模型求解中;
结果表示、分析,模型检验;
推广部分。
5)在问题分析推导过程中,需要注意的:
分析要:中肯、确切;
术语要:专业、内行;
原理、依据要:正确、明确;
表述要:简明,关键步骤要列出;
忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。
4、模型求解
(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密;
(2)需要说明计算方法或算法的原理、思想、依据、步骤
若采用现有软件,要说明采用此软件的理由,软件名称;
(3)计算过程,中间结果可要可不要的,不要列出2016年数学建模论文格式要求论文。
(4)设法算出合理的数值结果。
5、模型检验、结果分析
(1)最终数值结果的正确性或合理性是第一位的;
(2)对数值结果或模拟结果进行必要的检验。当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进;
(3)题目中要求回答的问题,数值结果,结论等,须一一列出;
(4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据;
(5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页)
数值结果表示:精心设计表格;可能的话,用图形图表形式。
宜宾学院数模竞赛论文模版:
宜宾学院第三届 大学生数学建模竞赛
(20xx年5月19日-5月28日)
参赛题目(在所选题目上打勾) A B 参赛编号(竞赛组委会填写)
论文题目
摘 要
1、摘要:本文解决什么问题,解决问题的方法,结论.
提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
关键词:
2、正文
一、问题的提出:叙述问题内容及意义.
二、基本假设:写出问题的合理假设.
三、建立模型:详细叙述模型、变量、参数代表的意义和满足的条件及建模
思想.
四、模型求解:求解、算法的主要步骤.
五、结果分析与检验:(含误差分析).
六、模型评价:优缺点及改进意见.
七、参考文献:限公开发表文献,指明出处..
3、附件:计算框图、程序及打印结果.
参考文献 例子
3d建模论文写作范文大全 第9篇
从客观的角度来说,数学科目的奇妙之处在于,将实际问题抽象化之后,解题方法就变得更加宽泛,除了上述的方程组之外,还可以通过其他类型的数学建模来解决。例如不等式组。从教学经验上来分析,不等式组比较适合在市场经营、核定价格、分析盈亏等问题的解答中应用。这些问题并没有一个特别确切的答案,往往会根据实际发展情况来进行解答,不等式组可以缩小范围,将问题的答案更加细致化,避免单纯数值带来的问题不确切、答案不清晰、解决问题不彻底等现象。还有,函数模型也是数学建模思想的重要组成部分。初中数学的要点在于,掌握各种数学知识的基础部分,函数模型符合初中学生的学习心理,可以让学生去钻研和探索。从理论上来说,函数揭示了现实世界数量关系和运动、变化规律,适合解决成本最低、利润最大等问题。函数在运用的过程中,能够更加准确地找到“最高点”和“最低点”,便于问题的精确解答,在代入实际问题时,基本上不需要再一次检验,可以直接得出最优结果。
本文就初中数学建模思想进行了讨论和研究,就当下的情况而言,初中数学建模的确取得了一定的积极成就,教师的教学水平和学生的思维框架都得到了提升。在今后的相关教学工作中,初中数学建模思想还需要进一步提升。首先,建模思想要趋向于多元化;其次,建模方式要形成独特的方案和思路;第三,初中数学建模思想必须具备长效机制,不是一次用完就结束了。相信在日后的努力当中,初中数学建模思想可以获得更大的发展,并且对学生、教师都产生较大的积极意义。